PHYSICAL REVIEW E

VOLUME 51, NUMBER 4

APRIL 1995

Numerical simulations of Kadomtsev-Petviashvili soliton interactions

E. Infeld, A. Senatorski, and A. A. Skorupski
Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw, Poland
(Received 19 August 1994; revised manuscript received 7 November 1994)

The Kadomtsev-Petviashvili equation generalizes that of Korteweg and de Vries to two space dimen-
sions and arises in various weakly dispersive media. Two very different species of soliton solutions are
known for one variant, KPI. The first species to be discovered are line solitons, the second are two di-
mensional lumps. This paper describes numerical simulations, consistent with all constraints of the
equation, in which very distorted line solitons break up into smaller line solitons and arrays of lumps.
The arrays can interact with one another. In some cases, aspects of the results of the simulations can be
understood in the light of specially constructed exact solutions. Simulations in which initial conditions
fail to satisfy the constraints of the equation are also described.

PACS number(s): 47.20.Ky, 52.35.Sb, 52.35.Py

I. INTRODUCTION
The Kadomtsev-Petviashvili equation [1]

(n,+6nn, +n,, ), +3en, =0, e==£1 (1.1)

is of both mathematical and physical interest. In this
form, it is not an evolution equation. (However, it is
when written without the overall x differentiation but
with a 3, ! operator in front of the last term. This choice
is discussed in [2].) For e= —1 the equation is designated
KPI and has two distinct and different kinds of soliton
solutions. The first are line solitons and several of these
can propagate at acute angles to each other, each with a
constant velocity v; when they are well separated. The
amplitudes and speeds are all different. In mathematical
terms, the building blocks of these solitons are exponen-
tials. The second kind are lumps bounded in all direc-
tions [3]. They collide without distortion or change of
phase. Again, no two amplitudes are equal. The lumps
are unusual in that they are described mathematically by
ratios of polynomials rather than the more common ex-
ponentials. For more information on the two classes of
solitons see Ref. [4]. Similar behavior is found for anoth-
er two-dimensional (2D) equation, Davey-Stewartson II
[5,6].

Arrays of lumps have recently been found as exact
solutions [7,8]. It has in fact been shown that these ar-
rays can be represented by sums of lump solitons [7],
even though the former are given in terms of tri-
gonometric and hyperbolic functions. Recently, exact
solutions corresponding to cohabiting line solitons and
arrays of lumps have also been found [9]. In this paper,
when trying to understand the results of our numerical
simulations, we will extend some of this work and find ex-
act solutions that fit the results quantitatively.

The present work mainly reports results of numerical
simulations and such exact solutions as will elucidate
some aspects of these simulations. However, quite a lot
of general work on KPI has been done to date and a few
results should be mentioned here.

The Riemann-Hilbert problem was first established by
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Manakov [10]. The spectral significance of the lumps
was elucidated in Refs. [11] and [12], where Manakov’s
study was completed and it was shown that the spectral
analysis of the Lax pair associated with KPI leads to a
nonlocal Riemann-Hilbert problem for some eigenfunc-
tion u(x,y,t,k). (The Lax pair was first found in [13].)
This eigenfunction satisfies a Fredholm integral equation
and hence can have homogeneous solutions at k =k;.
These eigenvalues give rise to lumps. Thus, lumps in two
dimensions are generic and the analogs of solitons in one
dimension. Arbitrary decaying initial data will decom-
pose into a number of lumps. This is an analog of the
fact that arbitrary compact initial data of an integrable
equation in one space dimension will decompose into a
number of solitons.

In this paper, we will take distorted line solitons as our
initial conditions and the above general results will not
apply. Some incomplete theoretical results, however, do
suggest that line solitons will tend to break up into new
line solitons and lumps [14]. As already mentioned, some
special exact solutions found recently confirm this
behavior, believed to be general [9].

Recently, the present authors looked at a simulation in
which a “wiggled” line soliton constituted the initial con-
dition. The ‘“wavelength” of the distortion corresponded
to the maximum growth rate of a linear perturbation
(though we are not dealing with linear perturbation here).
The distorted line soliton decomposed into lumps and a
small, residual line soliton [15]. Almost simultaneously,
an exact solution exhibiting somewhat similar behavior
appeared in the English language literature [9].

In this paper, we will present those numerical simula-
tions that are far from, and not representable by, any sim-
ple exact solutions. However, in some cases these latter
solutions will help us understand some aspects of the
simulations.

Understanding a problem as complex as the decay and
interaction of different kinds of solitons should begin
with some simplification. Here we will assume all asymp-
totic velocities to be along x. This still seems to include
all the important physics.
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Before we proceed, a few words about the physical
derivation of both KPI and KPII would seem to be in or-
der. In deriving (1.1) in a wide range of physical con-
texts, it is assumed that a soliton or wave is either moving
along x or else propagating at a very acute angle to the x
axis, always from left to right. Changes in y are taken to
be much slower than along the line of motion. Further-
more, the velocity of soliton propagation differs only
slightly from that of sound. The equation is in all cases
nondimensional, the unit of velocity being the velocity of
sound, e.g., (gh)'/? for shallow water waves,
(KgT,/m;)""? in a two-component, electron-ion plasma.
In all cases considered, a whole host of phenomena occur
at velocities slightly in excess of these sonar values. It is
amazing just how much physics survives all the approxi-
mations involved in deriving (1.1) when considering
weakly dispersive media.

An extensive derivation of (1.1), including an ordering
of small parameters, is given in Chap. 5 of Ref. [4].
Equation (1.1) is integrable by inverse scattering [10,11]
and the simplest way of convincing oneself of this is to
perform a Painlevé analysis [16].

The simplest soliton solution to (1.1) is, regardless of €,

n(x,t)=2p3sech’[p(x —4p*t)], (1.2)

where p is a parameter and » is the excess of the density
over its average value n,, always positive for this solu-
tion, but not for others we will encounter later on. The
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soliton (1.2) was investigated for stability with respect to
two-dimensional perturbations [17,18]. Theory indicates
stability for e=1 (KPII), instability for e=—1 (KPI).
Numerical simulations have so far confirmed these state-
ments [15,18]. In these references the phase was per-
turbed by adding a term proportional to cos(k,y). The
soliton was seen to wiggle periodically, but otherwise
remain intact for KPII, but to break up as described
above for KPI. Here we will address KPI only.

II. NUMERICAL RESULTS

Our calculations were performed on the HP-Apollo
model 720 work station. The numerical algorithm used
for calculating the time evolution was the leapfrog algo-
rithm when (1.1) was integrated over x. The essence of
this algorithm consists of replacing the time derivative by
its symmetric difference approximation, [n(t+At)
—n(t —At)]/2At. The fast Fourier transform method
was used to calculate x and y derivatives. The scheme
was shown to be numerically stable for sufficiently short
time steps (see Appendix for details).

As an introductory exercise, we compared the results
of a dynamical simulation with the exact solution corre-
sponding to one lump [3]:

_ 4v[1—v(x —3vt ) +viy?]
no(x,p,t)= T 3 9
[1+v(x —3ve) +vy“]

With initial condition for the dynamical simulation

2.1

FIG. 1. Decay of a distorted line soliton with §=0.04.
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n =ny(x,y,0), we maintained very good accuracy during
the entire simulation.

A second check on the accuracy was a comparison of
the products of disintegration of a slightly wiggled line
soliton. (Numerical noise on its own was not sufficient to
destabilize it on a reasonable time scale.) These products
emerged after a while and were of the type of (2.1). Here
agreement was also very good and can be seen in Ref.
[15]. (Unfortunately, reduction of Fig. 2 in Ref. [15] is
not the same as that of Fig. 1. It should be further re-
duced by % When this is done, an extremely good fit is
obtained.)

We now present the main results of this work, namely
the decay of the soliton (1.2) when wiggled such that the
phase at ¢t =0 becomes

p(x —xq)+8cos(k,y) . (2.2)

The Kadomtsev-Petviashvili equation (1.1) is peculiar in
that the initial condition must fulfill an infinite set of con-
straints if the solution is to remain localized in x [19].
(However we only need worry about these constraints at
t =0.) The first is obtained by integrating (1.1) over x,

3y, [ ndx=o0, (2.3)

and the others are more complicated. Obviously, bend-
ing as in (2.2) will satisfy these constraints. On the other
hand, the most commonly used perturbation in problems
of this type,

.

=\
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n=[1+8cos(k,y)]n, , (2.4)
would violate them. However, we will use the above as
an initial condition, just to see what happens when the
constraints are not satisfied, in Sec IV.

In Ref. [15] the phase alteration amplitude & in (2.2)
was taken to be small and k, corresponded to the max-
imum growth rate of a linear perturbation, known to be
2p2/3 [17]. A single array of lumps, plus a small residual
line soliton, were formed. Due to the smallness of &
(=0.016) this was somewhat similar to an exact solution
found around the same time [9] (and of course not known
to us). To see the similarity, compare Figs. 1 of Refs. [9]
and [15].

The rationale of the present paper is to present the re-
sults of numerical simulations far from the simple exact
solutions given in Ref. [9] or indeed obtainable in any
way (by simple we mean presentable as sums rather than
integrals). Thus here the § in (2.2) will be taken to be no-
ticeable and large (0.04 and 0.4, respectively) and distor-
tions of the line soliton finite. However, an exact solution
will be seen to elucidate some aspects of our results (Sec.
II0).

In Fig. 1, distortion of the line soliton is small but no-
ticeable (6=0.04). The initial bending of the soliton in-
duces a corresponding variation of the height. The line
soliton is next seen to break up into a much smaller line
soliton and two arrays (due to the assumed periodicity in
y, this drawing is to be imagined repeated in the y direc-

FIG. 2. Decay of a strongly distorted line soliton, §=0.4. The fourth and following frames exclude the residual distorted line soli-
ton. Frames (f) through (j) correspond to the enlarged center of (e).



3186

E. INFELD, A. SENATORSKI, AND A. A. SKORUPSKI 51

FIG. 2 (Continued).

tion ad infinitum). When & was just 0.016, as in Ref.
[15], only one array of lumps was produced.

In Fig. 2, the distortion of the initial line soliton is
large (6=0.4). Initially, two arrays of lumps were pro-
duced. Those on the left were larger and so subsequently
caught up with the lumps on the right. Interestingly, the
resulting tandem then shifted in y by half a wavelength of
the array and then separated. This took us by surprise,
but will become clearer in Sec. III. After a while, a third
array emerged (outside the frame).

In a fourth simulation (counting that of Ref. [15]), not
shown here, we collided an array of lumps with a line sol-
iton. The array emerged unaltered but once again shifted
by half a wavelength in the y direction.

Thus the A/2 perpendicular shift (not to be confused
with phase shifts in x) seems to be a general phenomenon,

though as far as we can see unnoticed so far in the other-
wise extensive literature on KPI.

In Sec. III we will try to shed some theoretical light on
all the above phenomena.

III. THEORETICAL INTERPRETATION

When the line soliton was distorted very weakly (8
small), one array of lumps was produced on the time scale
of the simulation [15]. However, when 6 was somewhat
larger, two arrays emerged. A somewhat qualitative ex-
planation of this would be as follows.

For § very small, a feasible approximation to our initial
condition is the sum of a line soliton and an initially very
small array of lumps with “wave number” k,. These two
entities will separate after a while and at the same time
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the lumps will grow (the value of k, was chosen to corre-
spond to the maximum growth rate of a linear perturba-
tion and this can be shown to be equal to the maximum
growth rate of an infinitesimal array of lumps on top of a
line soliton [9]).

When § is increased, the one periodic mode approxi-
mation is insufficient, and a second 2ky array must be in-
troduced to approximate the initial condition. This value
is beyond the range of instability and the second com-
ponent will not grow. However, due to nonlinear interac-
tion, a third array such that ky3=2ky —ky =ky will arise.
Therefore, after a while, a second array of lumps with
identical y spacing as the first will emerge.

As § is further increased, so will the number of arrays
increase, all with the same ky, as no other difference
mky —nky gives an ‘““unstable” wave number. Indeed, for
8=0.4 we saw a third array of lumps in the making.

This simple picture follows from our choice of
ky=2p2/3 (while the maximum unstable wave number

k, is p?). Considerably smaller values of k, would admit

¢=1+exp{ —2[(p; +p,)x — (0, +@,)t]}
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new unstable (m —n)k, values and the family of emerg-
ing lumps could be more complicated.

Figure 2 shows the decay of a strongly distorted line
soliton. Now increase of & has opened the door to new
phenomena: array collision and subsequent phase shifts
in y. Although no simple exact solution can even approx-
imate our simulation as described here, we can construct
an exact solution corresponding to a faster array of lumps
catching up with a slower array. Assuming that some as-
pects of our simulation can be isolated from the general
context, this exact solution might confirm the possibility
of a shift in y, as observed.

To find simple solutions to (1.1) we substitute

n =2(Ind),, . (3.1)
Following the method outlined in Chap. 5 of Ref. [4], a
solution for ¢ that may be new (e.g., not to be found ex-
plicitly in [4], [9], or [20]) can be found from a 4X4
determinant in the form

2cos(k,y) | 4 172
I3 ol | (s Texpl—2pax —wan]jexpl —(pix — @)
2cos(k,y) [ g '
pzy ICD| {S+exp[—2(p1x_(l)lt)]]exp[—(pzx-—wzt)]
2exp{ —[(p;+py)x — (0t w,)t
. [pp;v |gj:>|\/ﬁl 204 costak )
1P2

1
+1cpy (expl—2(pix —o) ] expl —2(pyx —ayt)]}

2
P17 P2
k2___ %pZ
2 y 2
PR o, Cc— P1tps
pitk;—p?t) k;—pip;
k2 k2—p2p2
B=— 2y .20, D= y “P1P2 ,
piky—p3) 2 2.2 p1tp,
ky_plp2 _
P17P2
CD

When interpreting this solution it is useful to know that
the one-array solution is given by (3.1) and

¢=cosh(px —wt+8)+V 1—p*/kZcos(k,y) ,
w=p>+3k}/p .

It is instructive to feed this into (3.1) and see how the ar-
ray is produced. This will make understanding what fol-
lows easier (being able to “‘see” arrays in ¢).

The solution (3.2) describes the collision between one

such array with p;,w;,k, and another with p,,m,,k,.

After collision both arrays retain their initial amplitudes,
velocities, and spacings, but are phase shifted in x (and
sometimes also in y as below).

The physical properties of the solution (3.1) and (3.2)
can be seen to be determined by two parameters only.
These are k, /p? and p,/p,. The two-dimensional pa-
rameter space is divided into various regions in Fig. 3.
Our solution is seen to include both situations in which
arrays will shift by A/2 in y (s = —1, broadly speaking if
p, and p, are not too different) and also regions such that
the phase shift in y does not occur (s =1, faster solitons
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ky/P1?

-1 "o P2/P1

FIG. 3. Parameter space of two lump array collisions
(k,/p%>1). Each point corresponds to one collision, due to the
fact that p, w, and k, are the same before and after. Without
loss of generality |p,|> |p,|. In the S regions the phase is shift-
ed by A/2 in y. Solutions along the curved part of the boundary
of these regions are degenerate and correspond to one array of
lumps but with 2k,. The k, /p} axis (above one) corresponds to
one lump array with k,(k, =0 corresponds to two line soliton
collisions).

much larger than slower ones). Degenerate cases, such as
ky=O (line solitons collide), or the solution reducing to
just the one-lump soliton array, also appear following
(3.2).

The dot in Fig. 3 is the result of an attempt at isolating
the two-lump array collision of Fig. 2 and comparing it to
an exact solution (the parameters of such an exact solu-
tion would fall roughly in the region of the dot). We see

J
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FIG. 4. Parameter space of lump array-line soliton col-
lisions (k, /p%>1). In the S regions the phase of the lump array
is shifted by A/2 in y by the collision. LF corresponds to faster
line soliton, LS to slower line soliton (as compared to lumps).
Along the boundaries between LF and LS w,/po=w,/p, and
the whole solution is stationary. Broken lines denote parame-
ters corresponding to a plane soliton decaying to a smaller plane
soliton and an array of lumps, not a collision: b =0, or b =1
(k, =0 corresponds to two line soliton collisions).

that agreement is good, as both here and in Fig. 2 ampli-
tudes and spacings are preserved, and there is a A/2
phase shift in y. (The ratios k, /p? and p,/p, can be
checked with Fig. 2 by inspection.)

Finally, we will try to illustrate the line soliton—lump
array collision mentioned in Sec. II but not illustrated
there. After we had performed this calculation, an exact
solution describing it was found formally [9]. It is, for ¢
(here a 3X 3 determinant is calculated following Chap. 5
of Ref. [4)]),

¢=1+exp[2(pox —wot)]+a exp[2(p,;x —wt)]+abexp[ —2(p,x —w,t)]

+2cos(k,y){exp[(po+p;)x —(wy+w)t]+bexp] —(prx —wyt)]} ,

where
5 p3+3k}
®o=4py, @;= y 01T 0o Wy Py =Po~ P2 >
P>
_ ky2 _kyz_l’%(zPo_Pz)2

a= az0.

k;_P%(2p0+p2)2 ’

k?—p3’
Here a line soliton given by p, and w, collides with an ar-
ray of lumps characterized by p,, ®,, and k,. The au-
thors overlooked the y shift because they only considered
b 20 (it occurs if and only if b <0). Figure 4 illustrates
all regions and degenerate solutions in parameter space.
In both cases considered, shifts of arrays of lumps by
A/2 in y can occur when the difference in sizes between
colliding solitons is not too great. This is intuitively ac-
ceptable, as conversely an enormous entity will always

(3.3)

just “walk through” a tiny one. In contradistinction to
the better known x shifts, those in y are “quantized” (ei-
ther O or A/2).

IV. OTHER INITIAL CONDITIONS

Up to now, our numerical simulations were chosen so
that the phase was perturbed by a cosine function of
varying amplitude 8. To show that the results obtained
are in some sense generic, we now take a strongly local-
ized perturbation such that the phase is

p(x —xy)+8exp(—Iy?) . 4.1)

This initial condition will satisfy all constraints men-
tioned in Sec. II. The periodicity is taken to be the same
as in previous simulations. The results for §=0.016 and
1 =5 are presented in Fig. 5. Note the essential similarity
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to Fig. 1 of Ref. [15] as far as production of large, two-
dimensional lumps is concerned. However, due to the
difference in initial condition, small “half period” lumps
are additionally produced (these extra lumps were com-
paratively larger when §=0.04, not shown here).

Figures 6 and 7 present results for the improper initial
conditions mentioned in Sec II, see (2.4). We took
8=0.016 and 0.04, respectively. Nevertheless, the essen-
tial features of our previous, ‘“correct” simulations are
observed. This is in accord with the theory of Ref. [2].
Here & is chosen to be identical with those of Ref. [15]
and Fig. 1, respectively. In spite of the differences
(modulation of amplitude rather than phase), the similari-
ties are striking.

All in all, the simulations of Sec. II are indeed seen to
be generic. This fact adds physical significance not only
to them, but also to the exact solutions that abound in
the literature.
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APPENDIX: THE NUMERICAL ALGORITHM
AND ITS STABILITY

We assume that Eq. (1.1) is defined for x€[—L,,L, ]
and yE[—Ly,Ly]. The solution n(x,y,t) is assumed to
be well localized in x, so that we can put
[n,+6nn,+n.,, ]—Lx:O' With this assumption (1.1) is

equivalent to
n,+6nn, +n, +3e [T n,dx'=0. (A1)

Designating all variables in (A1) by the superscript zero
and introducing the transformations

x%=x/v,—L,, y°=y/v,—L,, n°=Bn, t°=t/y,
(A2)

where v, =w/L, and v,=m/L,, we transform the origi-
nal intervals of x and y into [0,27]. Furthermore choos-

ing
B=vi/6, y=2v3, (A3)

we transform (A1) into

o+ [nny +n, +ed fo"nyydx'}:o, A=32/4

(A4)

XXX
x€[0,27], y€[0,27] .

Equation (A4) was integrated by using the leapfrog time
step:

n(t+At)—n(t —At)
x ’ —
+At [ A e d [ n,dx ]m—o. (A5)

This was combined with the pseudospectral method, as
described e.g., in [21]. Thus the interval [0,27] for x is
divided into 2N, subintervals of length Ax =#/N,, and
similarly for y (2N, subintervals of length Ay =w/N,).
The function n, defined on the discrete mesh (x;,¥1),
x;=jAx, y, =[Ay, can be transformed to discrete Fourier
space for both x and y variables. Thus for each y; we
define the discrete Fourier transform in x:

2N, -1
Ak, )=2N,)"12 3 n(x;)exp(—ik,x;) ,
=0 (A6)
k,=0,x1,...,£N, .
The inverse transform is given by
n(x;)=(2N,)"'?3 a(k, explik, x) , (A7)
k
x X=x,

]

where only one-half of the contributions at k, =+ N, are
included in the sum over k,. Replacing x —y and j—/
everywhere in (A6) and (A7) we obtain the formulas for
the discrete Fourier transform in y (for each x;). The
essence of the pseudospectral approach is to calculate the
partial derivatives at the mesh points by differentiating
the interpolation formula (A7) (or its analog in y) with
respect to x (or y). Thus, for example,

n(x;)=2N,)7'*3 ik, 7k, Jexplik,x;) , (A8)
k

x

etc. The integral in (A5) was calculated by using the
Simpson formula, and the sums of the type of (A6) or
(A8) were determined by using the well-known fast
Fourier transform formalism as implemented in [22].

To examine the linear stability of the leapfrog time step
(AS5), we linearize Egs. (Al) and (AS5S) by replacing
nn,—an,, where a=const. Then we differentiate the
linearized equation (AS5) with respect to x, and look for
the solution # in the form of a single Fourier harmonic in
x and y, with the assumed exponential dependence on
time:

n=x""%expli(k.x+k,y)] . (A9)

Substitution of (A9) in (AS) (after linearization and
differentiation d/9x ) leads to a quadratic in «:

K>*—i2f (At k ,k,,a)k—1=0,

(A10)
f(ALk ky,,a)=1At(k}—ak, —e Ak} /k,) ,
where we have to assume k,70, see (A6). Numerical sta-
bility of the algorithm in question means that the solution
(A9) cannot grow in time, i.e., |k| <1. In view of (A10)
this is the case if and only if

If (At kg, ky,a)[ <1 (A11)
(a is assumed to be real.) Equation (A11) determines the
maximum time step At for stability.

(i) e=—1 (KPI)
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|fI= 1Atk (k2 +]al)+ AN2/ |k, ] . (A12)

The right-hand side of (A12) as a function of |k, | has a
single minimum, and therefore the maximum of this
function for |k,[=1,...,N, is reached at |k,| either 1
or N,. Assuming that |a|,,(=|nl,,) is much less than
either AN}(>>1) or N7, the stability condition takes the
form (A4 =3VJ2,/vi, vy=w/Ly, v,=w/L,, N,=7/Ax,
N,=7/Ay)

2
max( AN},N}+ AN}/N,)

At < (A13)

(ii) e=1 (KPII)
Assuming again that |a|,,, is negligible, as above, the
stability condition takes the form

2

max( ANy, N;)

At <
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